» »

Все поколения процессоров интел. Процессоры Intel - как устроены и основные принципы

07.01.2024

Компания Intel в скором будущем начнёт поставки нового семейства процессоров для ноутбуков. Процессоры под кодовым названием Kaby Lake 7-го поколение представляют особый интерес для тех, кто готовится в ближайшем будущем сменить платформу на более производительную. Любители видеокодирования заметят существенную разницу в выигрыше от нового процессора. Киноманы при просмотре видео с высоченным битрейтом по настоящему останутся довольны. Игроманы смогут наслаждаться видеоиграми прямо на ноутбуках. Всё это вполне достижимо с процессорами Intel 7-го поколения.

В этом месяце конференция Intel Developer Forum дала почувствовать вкус всех прелестей процессоров 7-го поколения. На форуме во время демонстрации ноутбук Dell XPS 13 был в состоянии выдерживать супер графику в тяжелых видеоиграх, используя стандартную интегрированную графику Intel на новой платформе. Это просто потрясающие достижение.

Таким образом прошедший 30 августа 2016 года анонсный дебют компании Intel наглядно продемонстрировал нам, насколько эти процессоры будут производительнее всего процессорного рынка, существующего сейчас.

Вот что стало известно после состоявшегося форума о многоядерных процессорах Intel 7-го поколения:

100 проектов до конца года

На своем форуме разработчиков Intel объявила о том, что вся линейка процессоров 7-го поколения уже доступны ведущим производителям компьютерной индустрии и партнерам Intel, что означает выпуск очень многообещающих ноутбуков на базе новых процессоров до конца года. Крис Уокер - генеральный менеджер компании Intel для мобильных клиентских платформ, поведал, что новые процессоры в диапазоне энергопотребления от 4,5 Ватт до 15 Ватт будут первыми, которые появятся в ноутбуках, а именно в ультратонких ноутбуках. Как уже сообщалось ранее, когда только появилась информация о процессорах 7-го поколения , уже ведется работа над 100 проектами с участием процессоров 7-го поколения, которые будут доступны в четвертом квартале 2016 года.

Новое семейство процессоров будет расширяться на другие рынки, но уже в следующем году. Так в частности в январе ожидается появление процессоров Intel 7-го поколения в рабочих станциях, игровых системах и виртуальной реальности.

Чипы имеют знакомую архитектуру

Intel построили 7-е поколение процессоров на той же архитектуре Skylake, что и процессоры 6-го поколения, представленные в прошлом году. Так что Intel не произвёл революцию, изобретая новую архитектуру.Skylake просто была немного доработана до идеала.

В частности, Intel сообщил, что улучшили напряжение транзисторов на процессорах. В результате получается, что микроархитектура стала более энергоэффективной и поэтому процессоры 7-го поколения могут предложить прирост производительности по сравнению с предыдущими поколениями процессоров Intel.

Ядра m5 и m7 уходят

Intel вносит изменения в обозначения маломощных чипов, устраняя 4,5 Ваттные процессоры Core m5 и m7 и превращая их в Core i5 и Core i7. Компания надеется, что это изменение поможет потребителям, многие из которых не понимают разницу между Core i5 и Core m5. Однако, 4,5-ваттные процессоры, также известные как чипы серии Kaby Lake , с буквой Y аналогичны по мощности. Если Вы видите Y в конце SKU, то это один из чипов ранее известных как ядра m5 или m7.

Что еще более интересно, что Intel не изменит марку ядра для его начального уровня процессоров Core m3, который является самым медленным и наименее дорогим из линейки m . Таким образом, в порядке производительности, чипы4,5-ватт называются Core m3, Core i5 Y серии и Core i7 серии Y.

Прирост производительности

Вам, вероятно, не стоит выбрасывать свой процессор 6-го поколения, если Вы сделали апгрейд в этом году или в прошлой зимой. Skylake однозначно не стоит менять в пользу одного из процессоров 7-го поколения аналогичной линейки. Замена оправдана только повышением индекса процессора. Но Intel говорит, что если Вы решитесь на замену, то получите ощутимый прирост производительности. Используя тестовый пакет SYSmark для измерения производительности, Intel представили компьютер с процессором 7-го поколения Core i7-7500U, который показал прирост производительности на 12 процентов больше, чем процессор 6-го поколения Core i7-6500U. Тестирование WebXPRT 2015 показало 19-процентное повышение производительности.


Не думаю, что даже 19-процентное преимущество подстегнёт покупателей менять свой не такой уж и старый и добрый Skylake на Kaby Lake. Очевидно, что увеличение производительности выглядит более существенным, когда в сравнение идут процессоры 5-го, 4-го поколений, на замену которых Intel и делает ставку по обновлению процессоров. Новый Core ​​i5-7200U в 1.7 раз производительнее своего пятилетнего собрата Core i5-2467M в SYSmark. На тесте 3DMark новый процессор в три раза оказался быстрее пятилетнего процессора.

Представители Intel сообщили, что 7-е поколение центральных процессоров сможет играть в требовательных играх на средних настройках в разрешении 720p со встроенной графикой или при 4К с совместимым графическим усилителем.

Эти чипы предназначены для видео

Intel приняла уведомление о все 4K и 360 градусов видео мы потребляющего. В ответ на это производитель чипов представил новый видео движок для своих 7-Gen процессоров ядро, которое стремится обрабатывать любые требования содержания вы можете бросить на нее.

Новые чипы поддерживают аппаратное декодирование HEVC 10-битного профиля цветности, которое позволить Вам играть на 4K и UltraHD видео без каких-либо тормозов. Intel также добавила возможность декодирования VP9 для ядер 7-го поколения, чтобы повысить эффективность работы, когда Вы смотрите 4K видео и в то же время выполняете другие задачи.

Ядра 7-го поколения также смогут производить операции видеоконвертации намного быстрее других процессоров. Например, по данным Intel Вы сможете перекодировать 1 час 4K видео всего за 12 минут.


Больше энергоэффективности

С точки зрения повышения энергоэффективности батареи для ноутбуков представители Intel сообщили, что ноутбук с процессором 7-го поколения может работать в течение 7 часов при потоковой передаче 4K или 4K 360 градусов YouTube видео. По сравнению с ядрами 6-го поколения преимущество в работе составит в среднем 4 часа в пользу седьмого поколения. Что касается 4K потокового видео Intel обещает работоспособность в течение всего дня, что составляет 9 с половиной часов.

7-е поколения предлагает ряд других функций

Процессоры 7-го поколения предлагают несколько других функций, направленных на то, чтобы Ваши ноутбуки работали более эффективно. Например, Intel технология Turbo Boost 2.0. Это функция, которая управляет производительностью процессора и его мощностью, вроде автоматического разгона процессора, когда тактовая частота ЦП превышает номинальные показатели производительности.

Технология Hyper-Threading помогает процессору выполнять задачи быстрее, обеспечивая два потока обработки для каждого из ядер.


7-е поколение процессоров также включают в себя технологию Speed ​​Shift , которая должна сделать более быстрыми выполняемые приложения. Эта технология позволяет процессору более реагировать на запросы приложений об увеличении или уменьшении частоты для обеспечения наилучших показателей, тем самым оптимизируя производительность и эффективность. Это особенно эффективно, когда приложениям требуются очень короткие всплески активности, такие как просмотр веб-страниц или ретуширование фотографий многочисленными мазками кисточек в графическом редакторе.

Маркировка, позиционирование, сценарии использования

Этим летом Intel выпустила на рынок новое, четвертое поколение архитектуры Intel Core, имеющее кодовое наименование Haswell (маркировка процессоров начинается с цифры «4» и выглядит как 4xxx). Основным направлением развития процессоров Intel сейчас видит повышение энергоэффективности. Поэтому последние поколения Intel Core демонстрируют не такой уж сильный рост производительности, зато их общее потребление энергии постоянно снижается - за счет и архитектуры, и техпроцесса, и эффективного управления потреблением компонентов. Единственным исключением является интегрированная графика, производительность которой заметно растет из поколения в поколение, пусть и за счет ухудшения потребления энергии.

Эта стратегия прогнозируемо выводит на первый план те устройства, в которых энергоэффективность важна - ноутбуки и ультрабуки, а также только зарождающийся (ибо в прежнем виде его можно было отнести исключительно к нежити) класс планшетов под Windows, основную роль в развитии которого должны сыграть новые процессоры с уменьшенным потреблением энергии.

Напоминаем, что недавно у нас вышли краткие обзоры архитектуры Haswell, которые вполне применимы и к настольным, и к мобильным решениям:

Кроме того, производительность четырехъядерных процессоров Core i7 была исследована в статье со сравнением десктопных и мобильных процессоров . Также отдельно была исследована производительность Core i7-4500U . Наконец, можно ознакомиться с обзорами ноутбуков на Haswell, включающими тестирование производительности: MSI GX70 на самом мощном процессоре Core i7-4930MX, HP Envy 17-j005er .

В этом материале речь пойдет о мобильной линейке Haswell в целом. В первой части мы рассмотрим разделение мобильных процессоров Haswell на серии и линейки, принципы создания индексов для мобильных процессоров, их позиционирование и примерный уровень производительности разных серий внутри всей линейки. Во второй части - более подробно рассмотрим спецификации каждой серии и линейки и их основные особенности, а также перейдем к выводам.

Для тех, кто не знаком с алгоритмом работы Intel Turbo Boost, в конце статьи мы разместили краткое описание этой технологии. Рекомендуем с ним перед чтением остального материала.

Новые буквенные индексы

Традиционно все процессоры Intel Core делятся на три линейки:

  • Intel Core i3
  • Intel Core i5
  • Intel Core i7

Официальная позиция Intel (которую представители компании обычно озвучивают, отвечая на вопрос, почему среди Core i7 бывают как двухъядерные, так и четырехъядерные модели) состоит в том, что процессор относят к той или иной линейке исходя из общего уровня его производительности. Однако в большинстве случаев между процессорами разных линеек есть и архитектурные различия.

Но уже в Sandy Bridge появилось, а в Ivy Bridge стало полноценным еще одно деление процессоров - на мобильные и ультрамобильные решения, в зависимости от уровня энергоэффективности. Причем на сегодня именно эта классификация является базовой: и в мобильной, и в ультрамобильной линейке есть свои Core i3/i5/i7 с весьма различающимся уровнем производительности. В Haswell, с одной стороны, разделение углубилось, а с другой - линейку попытались сделать более стройной, не так вводящей в заблуждение дублированием индексов. Кроме того, окончательно оформился еще один класс - сверхультрамобильные процессоры с индексом Y. Ультрамобильные и мобильные решения по-прежнему маркируются буквами U и M.

Итак, чтобы не путаться, сначала разберем, какие буквенные индексы используются в современной линейке мобильных процессоров Intel Core четвертого поколения:

  • M - мобильный процессор (TDP 37-57 Вт);
  • U - ультрамобильный процессор (TDP 15-28 Вт);
  • Y - процессор с экстремально низким потреблением (TDP 11,5 Вт);
  • Q - четырехъядерный процессор;
  • X - экстремальный процессор (топовое решение);
  • H - процессор под упаковку BGA1364.

Раз уж упомянули TDP (теплопакет), то остановимся на нем чуть подробнее. Следует учитывать, что TDP в современных процессорах Intel не «максимальный», а «номинальный», то есть рассчитывается исходя из нагрузки в реальных задачах при функционировании на штатной частоте, а при включении Turbo Boost и увеличении частоты тепловыделение выходит за рамки заявленного номинального теплопакета - для этого есть отдельный TDP. Также определен TDP при функционировании на минимальной частоте. Таким образом, существует целых три TDP. В данной статье в таблицах используется номинальное значение TDP.

  • Стандартным номинальным TDP для мобильных четырехъядерных процессоров Core i7 является 47 Вт, для двухъядерных - 37 Вт;
  • Литера Х в названии поднимает тепловой пакет с 47 до 57 Вт (сейчас на рынке только один такой процессор - 4930MX);
  • Стандартный TDP для ультрамобильных процессоров U-серии - 15 Вт;
  • Стандартный TDP для процессоров Y-серии - 11,5 Вт;

Цифровые индексы

Индексы процессоров Intel Core четвертого поколения с архитектурой Haswell начинаются с цифры 4, что как раз и говорит о принадлежности к этому поколению (у Ivy Bridge индексы начинались с 3, у Sandy Bridge - с 2). Вторая цифра обозначает принадлежность к линейке процессоров: 0 и 1 - i3, 2 и 3 - i5, 5–9 - i7.

Теперь разберем последние цифры в названии процессоров.

Цифра 8 в конце означает, что эта модель процессора имеет повышенный TDP (с 15 до 28 Вт) и существенно более высокую номинальную частоту. Еще одной отличительной чертой этих процессоров является графика Iris 5100. Они ориентированы на профессиональные мобильные системы, от которых требуется стабильная высокая производительность в любых условиях для постоянной работы с ресурсоемкими задачами. Разгон с помощью Turbo Boost у них тоже есть, но за счет сильно поднятой номинальной частоты разница между номиналом и максимумом не слишком велика.

Цифра 2 в конце названия говорит о сниженном с 47 до 37 Вт TDP у процессора из линейки i7. Но за снижение TDP приходится платить более низкими частотами - минус 200 МГц к базовой и разгонной частотам.

Если вторая с конца цифра в названии - 5, то процессор имеет графическое ядро GT3 - HD 5ххх. Таким образом, если в названии процессора последние две цифры - 50, то в него установлено графическое ядро GT3 HD 5000, если 58 - то Iris 5100, а если 50H - то Iris Pro 5200, потому что Iris Pro 5200 есть только у процессоров в исполнении BGA1364.

Для примера разберем процессор с индексом 4950HQ. Наименование процессора содержит H - значит, упаковка BGA1364; содержит 5 - значит, графическое ядро GT3 HD 5xxx; сочетание 50 и Н дает Iris Pro 5200; Q - четырехъядерный. А поскольку четырехъядерные процессоры есть только в линейке Core i7, то это мобильная серия Core i7. Что подтверждает и вторая цифра названия - 9. Получаем: 4950HQ - это мобильный четырехъядерный восьмипоточный процессор линейки Core i7 с TDP 47 Вт с графикой GT3e Iris Pro 5200 в исполнении BGA.

Теперь, когда мы разобрались с наименованиями, можно поговорить о разделении процессоров на линейки и серии, или, проще говоря, о сегментах рынка.

Серии и линейки Intel Core 4-го поколения

Итак, все современные мобильные процессоры Intel делятся на три больших группы в зависимости от энергопотребления: мобильные (M), ультрамобильные (U) и «сверхультрамобильные» (Y), а также на три линейки (Core i3, i5, i7) в зависимости от производительности. В результате мы можем составить матрицу, которая позволит пользователю подобрать процессор, лучше всего подходящий под его задачи. Попробуем свести все данные в единую таблицу.

Серия/линейка Параметры Core i3 Core i5 Core i7
Мобильная (М) Сегмент ноутбуки ноутбуки ноутбуки
Ядер/потоков 2/4 2/4 2/4, 4/8
Макс. частоты 2,5 ГГц 2,8/3,5 ГГц 3/3,9 ГГц
Turbo Boost нет есть есть
TDP высокий высокий максимальный
Производительность выше среднего высокая максимальная
Автономность ниже среднего ниже среднего невысокая
Ультрамобильная (U) Сегмент ноутбуки/ ультрабуки ноутбуки/ ультрабуки ноутбуки/ ультрабуки
Ядер/потоков 2/4 2/4 2/4
Макс. частоты 2 ГГц 2,6/3,1 ГГц 2,8/3,3 ГГц
Turbo Boost нет есть есть
TDP средний средний средний
Производительность ниже среднего выше среднего высокая
Автономность выше среднего выше среднего выше среднего
Сверхультра­мобильная (Y) Сегмент ультрабуки/ планшеты ультрабуки/ планшеты ультрабуки/ планшеты
Ядер/потоков 2/4 2/4 2/4
Макс. частоты 1,3 ГГц 1,4/1,9 ГГц 1,7/2,9 ГГц
Turbo Boost нет есть есть
TDP низкий низкий низкий
Производительность низкая низкая низкая
Автономность высокая высокая высокая

Для примера: покупателю необходим ноутбук с высокой производительностью процессора и умеренной стоимостью. Раз ноутбук, да еще и производительный, то необходим процессор серии М, а требование умеренной стоимости заставляет остановиться на линейке Core i5. Еще раз подчеркиваем, что в первую очередь следует обращать внимание не на линейку (Core i3, i5, i7), а на серию, потому что в каждой серии могут быть свои Core i5, но уровень производительности у Core i5 из двух разных серий будет существенно отличаться. Например, Y-серия очень экономична, но имеет низкие частоты работы, и процессор Core i5 Y-серии будет менее производительным, чем процессор Core i3 U-серии. А мобильный процессор Core i5 вполне может быть производительнее ультрамобильного Core i7.

Примерный уровень производительности в зависимости от линейки

Давайте попробуем пойти на шаг дальше и составить теоретический рейтинг, который наглядно демонстрировал бы разницу между процессорами разных линеек. За 100 баллов мы возьмем самый слабый представленный процессор - двухъядерный четырехпоточный i3-4010Y с тактовой частотой 1300 МГц и объемом кэша L3 3 МБ. Для сравнения берется самый высокочастотный процессор (на момент написания статьи) из каждой линейки. Основной рейтинг мы решили считать по разгонной частоте (для тех процессоров, у которых есть Turbo Boost), в скобках - рейтинг для номинальной частоты. Таким образом, двухъядерный четырехпоточный процессор с максимальной частотой 2600 МГц получит 200 условных баллов. Увеличение кэша третьего уровня с 3 до 4 МБ принесет ему 2-5% (данные получены на основе реальных тестов и исследований) прироста условных баллов, а увеличение количества ядер с 2 до 4 соответственно удвоит количество баллов, что тоже достижимо в реальности при хорошей многопоточной оптимизации.

Еще раз настоятельно обращаем внимание, что рейтинг является теоретическим и основан по большей части на технических параметрах процессоров. В реальности сочетается большое количество факторов, поэтому выигрыш в производительности относительно самой слабой модели линейки практически наверняка не будет таким большим, как в теории. Таким образом, не стоит прямо переносить полученное соотношение на реальную жизнь - сделать окончательные выводы можно лишь по результатам тестирования в реальных приложениях. Тем не менее, эта оценка позволяет примерно оценить место процессора в линейке и его позиционирование.

Итак, некоторые предварительные замечания:

  • Процессоры Core i7 U-серии будут примерно на 10% опережать Core i5 благодаря чуть большей тактовой частоте и большему объему кэша третьего уровня.
  • Разница между процессорами Core i5 и Core i3 U-серии c TDP 28 Вт без учета Turbo Boost составляет около 30%, т. е. в идеале производительность тоже будет различаться на 30%. Если учитывать возможности Turbo Boost, то разница по частотам составит порядка 55%. Если же проводить сравнение процессоров Core i5 и Core i3 U-серии с TDP 15 Вт, то при устойчивой работе на максимальной частоте Core i5 будет иметь частоту на 60% выше. Однако номинальная частота у него чуть ниже, т. е. при работе на номинальной частоте он может даже чуть уступать Core i3.
  • В М-серии большую роль играет наличие у Core i7 4 ядер и 8 потоков, однако тут надо помнить, что это преимущество проявляется только в оптимизированном ПО (как правило, профессиональном). У процессоров Core i7 с двумя ядрами производительность будет чуть выше за счет более высоких разгонных частот и немного большего объема кэша L3.
  • В серии Y процессор Core i5 имеет базовую частоту на 7,7% и разгонную на 50% выше, чем Core i3. Но и в этом случае есть дополнительные соображения - та же энергоэффективность, шумность работы системы охлаждения и т. д.
  • Если же сравнивать между собой процессоры серий U и Y, то только частотный разрыв между U- и Y-процессорами Core i3 составляет 54%, а у процессоров Core i5 - 63% на максимальной разгонной частоте.

Итак, рассчитаем балл для каждой линейки. Напомним, основной балл считается по максимальным разгонным частотам, балл в скобках - по номинальным (т. е. без разгона по Turbo Boost). Также мы рассчитали коэффициент производительности на Вт.

¹ макс. - при максимальной разгонной, ном. - при номинальной частоте
² коэффициент - условная производительность, поделенная на TDP и умноженная на 100
³ данные о разгонном TDP для этих процессоров неизвестны

По приведенной таблице можно сделать следующие наблюдения:

  • Двухъядерные процессоры Core i7 серий U и M лишь немногим быстрее процессоров Core i5 аналогичных серий. Это касается сравнения как для базовой, так и для разгонной частот.
  • Процессоры Core i5 серий U и M даже на базовой частоте должны быть заметно быстрее Core i3 аналогичных серий, а в Boost-режиме и вовсе уйдут далеко вперед.
  • В серии Y разница между процессорами на минимальных частотах невелика, но с разгоном Turbo Boost Core i5 и Core i7 должны уходить далеко вперед. Другое дело, что величина и, главное, стабильность разгона очень зависят от эффективности охлаждения. А с этим, учитывая ориентацию этих процессоров на планшеты (особенно - безвентиляторные) могут быть проблемы.
  • Core i7 серии U практически дотягивается по производительности до Core i5 M-серии. Там есть другие факторы (для него сложнее достичь стабильности из-за менее эффективного охлаждения, да и стоит он дороже), но в целом это неплохой результат.

Что же касается соотношения энергопотребления и рейтинга производительности, то можно сделать следующие выводы:

  • Несмотря на увеличение TDP при переходе процессора в Boost-режим, энергоэффективность повышается. Это обусловлено тем, что относительное увеличение частоты больше относительного увеличения TDP;
  • Ранжирование процессоров различных серий (M, U, Y) происходит не только по уменьшению TDP, но и по увеличению энергоэффективности - к примеру, процессоры Y-серии показывают бо́льшую энергоэффективность, чем процессоры U-серии;
  • Стоит заметить, что с увеличением количества ядер, а следовательно, и потоков, энергоэффективность также повышается. Это можно объяснить тем, что удваиваются лишь сами процессорные ядра, но не сопутствующие контроллеры DMI, PCI Express и ИКП.

Из последнего можно сделать интересный вывод: если приложение хорошо распараллеливается, то четырехъядерный процессор окажется более энергоэффективным, чем двухъядерный: он быстрее закончит вычисления и вернется в режим простоя. Как итог, многоядерность может стать следующим шагом в борьбе за повышение энергоэффективности. В принципе, эту тенденцию можно отметить и в лагере ARM.

Итак, хотя рейтинг сугубо теоретический, и не факт, что он точно отражает реальную расстановку сил, но даже он позволяет сделать определенные выводы касательно распределения процессоров в линейке, их энергоэффективности и соотношения по этим параметрам между собой.

Haswell против Ivy Bridge

Хотя процессоры Haswell уже довольно давно вышли на рынок, присутствие процессоров Ivy Bridge в готовых решениях даже сейчас остается довольно высоким. Особых революций при переходе к Haswell, с точки зрения потребителя, не произошло (хотя рост энергоэффективности для некоторых сегментов выглядит внушительно), что порождает вопросы: а стоит ли обязательно выбирать четвертое поколение или можно обойтись третьим?

Сравнивать процессоры Core четвертого поколения с третьим напрямую сложно, потому что производитель поменял границы TDP:

  • серия M у Core третьего поколения имеет TDP 35 Вт, а у четвертого - 37 Вт;
  • серия U у Core третьего поколения имеет TDP 17 Вт, а у четвертого - 15 Вт;
  • серия Y у Core третьего поколения имеет TDP 13 Вт, а у четвертого - 11,5 Вт.

И если для ультрамобильных линеек TDP понизился, то для более производительной серии М он даже вырос. Тем не менее, попробуем провести примерное сравнение:

  • Топовый четырехъядерный процессор Core i7 третьего поколения имел частоты 3(3,9) ГГц, у четвертого поколения - те же 3(3,9) ГГц, то есть разница в производительности может быть обусловлена только архитектурными улучшениями - не более 10%. Хотя, стоит заметить, при плотном использовании FMA3 четвертое поколение опередит третье на 30-70%.
  • Топовые двухъядерные процессоры Core i7 третьего поколения М-серии и U-серии имели частоты 2,9(3,6) ГГц и 2(3,2) ГГц соответственно, а четвертого - 2,9(3,6) ГГц и 2,1(3,3) ГГц. Как видим, частоты если и выросли, то незначительно, так что и уровень производительности может вырасти лишь минимально, за счет оптимизации архитектуры. Опять же, если ПО знает о FMA3 и умеет активно использовать это расширение, то четвертое поколение получит солидное преимущество.
  • Топовые двухъядерные процессоры Core i5 третьего поколения М-серии и U-серии имели частоты 2,8(3,5) ГГц и 1,8(2,8) ГГц соответственно, а четвертого - 2,8(3,5) ГГц и 1,9(2,9) ГГц. Ситуация аналогична предыдущей.
  • Топовые двухъядерные процессоры Core i3 третьего поколения М-серии и U-серии имели частоты 2,5 ГГц и 1,8 ГГц соответственно, а четвертого - 2,6 ГГц и 2 ГГц. Ситуация снова повторяется.
  • Топовые двухъядерные процессоры Core i3, i5 и i7 третьего поколения Y-серии имели частоты 1,4 ГГц, 1,5(2,3) ГГц и 1,5(2,6) ГГц соответственно, а четвертого - 1,3 ГГц, 1,4(1,9) ГГц и 1,7(2,9) ГГц.

В целом, тактовые частоты в новом поколении практически не выросли, так что незначительный выигрыш в производительности получается только за счет оптимизации архитектуры. Заметное преимущество четвертое поколение Core получит при использовании ПО, оптимизированного под FMA3. Ну и не стоит забывать про более быстрое графическое ядро - там оптимизация способна принести существенный прирост.

Что касается относительной разницы в производительности внутри линеек, то по этому показателю поколения Intel Core третьего и четвертого поколений близки.

Таким образом, можно сделать вывод, что в новом поколении Intel решила снизить TDP вместо повышения частот работы. В результате прирост скорости работы ниже, чем мог бы быть, зато удалось добиться повышения энергоэффективности.

Подходящие задачи для разных процессоров Intel Core четвертого поколения

Теперь, когда мы разобрались с производительностью, можно примерно оценить, под какие задачи лучше всего подойдет та или иная линейка Core четвертого поколения. Сведем данные в таблицу.

Серия/линейка Core i3 Core i5 Core i7
Мобильная М
  • серфинг Сети
  • офисное окружение
  • старые и казуальные игры

Все предыдущее плюс:

  • профессиональное окружение на грани комфорта

Все предыдущее плюс:

  • профессиональное окружение (3D-моделирование, CAD, профессиональная фото- и видеообработка и т. д.)
Ультрамобильная U
  • серфинг Сети
  • офисное окружение
  • старые и казуальные игры

Все предыдущее плюс:

  • корпоративное окружение (к примеру, системы бухгалтерского учета)
  • нетребовательные компьютерные игры при наличии дискретной графики
  • профессиональное окружение на грани комфорта (вряд ли получится комфортно работать в том же 3ds max)
Сверхультра­мобильная Y
  • серфинг Сети
  • простое офисное окружение
  • старые и казуальные игры
  • офисное окружение
  • старые и казуальные игры

Из этой таблицы тоже хорошо видно, что в первую очередь стоит обращать внимание на серию процессора (M, U, Y), а уже потом на линейку (Core i3, i5, i7), поскольку линейка определяет соотношение производительности процессоров только внутри серии, а между сериями производительность заметно отличается. Это хорошо видно на сравнении i3 U-серии и i5 Y-серии: первый в данном случае будет производительнее второго.

Итак, какие выводы можно сделать по этой таблице? Процессоры Core i3 любой серии, как мы уже отмечали, интересны прежде всего ценой. Поэтому обращать на них внимание стоит, если вы стеснены в средствах и готовы смириться с проигрышем как по производительности, так и по энергоэффективности.

Мобильный Core i7 стои́т особняком из-за архитектурных отличий: четыре ядра, восемь потоков и заметно больше кэша L3. В результате он способен работать с профессиональными ресурсоемкими приложениями и показывать чрезвычайно высокий для мобильной системы уровень производительности. Но для этого ПО должно быть оптимизировано под использование большого количества ядер - в однопоточном ПО свои достоинства он не раскроет. И второе - эти процессоры требуют громоздкой системы охлаждения, т. е. устанавливаются только в крупные ноутбуки с большой толщиной, да и с автономностью у них не очень.

Core i5 мобильной серии предоставляют хороший уровень производительности, достаточный для выполнения не только домашне-офисных, но и каких-то полупрофессиональных задач. Например, для обработки фото и видео. По всем параметрам (потребление энергии, выделение тепла, автономность) эти процессоры занимают промежуточное положение между Core i7 М-серии и ультрамобильной линейкой. В общем, это сбалансированное решение, подходящее тем, кому производительность важнее, чем тонкий и легкий корпус.

Двухъядерные мобильные Core i7 - это примерно то же самое, что Core i5 М-серии, только немного производительнее и, как правило, заметно дороже.

Ультрамобильные Core i7 имеют примерно тот же уровень производительности, что и мобильные Core i5, но с оговорками: если система охлаждения выдержит длительную работу на повышенной частоте. Да и греются они под нагрузкой изрядно, что часто приводит к сильному нагреву всего корпуса ноутбука. Судя по всему, они достаточно дорогие, поэтому их установка оправдана только для топовых моделей. Зато их можно ставить в тонкие ноутбуки и ультрабуки, обеспечивая высокий уровень производительности при тонком корпусе и хорошей автономности. Это делает их отличным выбором для часто путешествующих профессиональных пользователей, которым важна энергоэффективность и малый вес, но часто требуется высокая производительность.

Ультрамобильные Core i5 показывают меньшую производительность по сравению со «старшим братом» серии, но справляются с любой офисной нагрузкой, при этом обладают хорошей энергоэффективностью и гораздо демократичнее по цене. В общем, это универсальное решение для пользователей, которые не работают в ресурсоемких приложениях, а ограничиваются офисными программами и интернетом, и при этом хотели бы иметь ноутбук/ультрабук, подходящий для путешествий, т. е. легкий, с небольшим весом и долго работающий от батарей.

Наконец, Y-серия тоже стоит особняком. По производительности ее Core i7 при удаче дотянется до ультрамобильного Core i5, но этого от него, по большому счету, никто не ждет. Для серии Y главное - высокая энергоэффективность и малое тепловыделение, позволяющее создать в том числе и безвентиляторные системы. Что же касается производительности, то достаточно минимально допустимого уровня, не вызывающего раздражения.

Кратко о Turbo Boost

На случай, если некоторые наши читатели подзабыли, как работает технология разгона Turbo Boost, предлагаем вам краткое описание ее работы.

Если грубо, то система Turbo Boost может динамически повышать частоту процессора сверх установленной благодаря тому, что постоянно следит, не выходит ли процессор за штатные режимы работы.

Процессор может работать только в определенном диапазоне температур, т. е. его работоспособность зависит от нагрева, а нагрев - от способности системы охлаждения эффективно отводить от него тепло. Но поскольку заранее неизвестно, с какой системой охлаждения будет работать процессор в системе пользователя, для каждой модели процессора указывается два параметра: частота работы и количество тепла, которое необходимо отводить от процессора при максимальной нагрузке на этой частоте. Поскольку эти параметры зависят от эффективности и правильной работы системы охлаждения, а также внешних условий (в первую очередь, температуры окружающей среды), производителю приходилось занижать частоту работы процессора, чтобы даже при самых неблагоприятных условиях работы он не терял стабильность. Технология Turbo Boost отслеживает внутренние параметры процессора и позволяет ему, если внешние условия благоприятны, работать на более высокой частоте.

Первоначально Intel объясняла, что технология Turbo Boost использует «эффект температурной инерции». В большинстве случаев в современных системах процессор находится в состоянии простоя, но время от времени на короткий период от него требуется максимальная отдача. Если в этот момент сильно поднять частоту работы процессора, то он быстрее справится с задачей и раньше вернется в состояние простоя. При этом температура процессора растет не сразу, а постепенно, поэтому при краткосрочной работе на очень высокой частоте процессор не успеет нагреться так, чтобы выйти за безопасные рамки.

В реальности довольно быстро выяснилось, что с хорошей системой охлаждения процессор способен работать под нагрузкой даже на повышенной частоте неограниченно долго. Таким образом, долгое время максимальная частота разгона была абсолютно рабочей, а к номинальной процессор возвращался лишь в экстремальных случаях или если производитель делал некачественную систему охлаждения для конкретного ноутбука.

Для того чтобы не допустить перегрева и выхода из строя процессора, система Turbo Boost в современной реализации постоянно отслеживает следующие параметры его работы:

  • температура чипа;
  • потребляемый ток;
  • потребляемая мощность;
  • число загруженных компонентов.

Современные системы на Ivy Bridge способны работать на повышенной частоте практически во всех режимах, кроме одновременной серьезной нагрузки на центральный процессор и графику. Что касается Intel Haswell, то пока у нас нет достаточной статистики по поведению этой платформы под разгоном.

Прим. автора: Стоит заметить, что температура чипа косвенно влияет и на потребляемую мощность - данное влияние становится явным при ближайшем рассмотрении физического устройства самого кристалла, поскольку электрическое сопротивление полупроводниковых материалов увеличивается с ростом температуры, а это в свою очередь ведет к увеличению потребления электроэнергии. Таким образом, процессор при температуре 90 градусов будет потреблять больше электроэнергии, чем при температуре 40 градусов. А поскольку процессор «подогревает» и текстолит материнской платы с дорожками, и окружающие компоненты, то и их потери электроэнергии на преодоление более высокого сопротивления также сказываются на энергопотреблении. Данное заключение легко подтверждается разгоном как «на воздухе», так и экстремальным. Всем оверклокерам известно, что более производительный кулер позволяет получить дополнительные мегагерцы, а уж эффект сверхпроводимости проводников при температуре близкой к абсолютному нулю, когда электрическое сопротивление стремится к нулю, знаком всем еще со школьной физики. Именно поэтому при разгоне с охлаждением жидким азотом и получается достигать таких высоких частот. Возвращаясь к зависимости электрического сопротивления от температуры, можно также сказать, что в какой-то мере процессор еще и сам себя подогревает: при повышении температуры, когда система охлаждения не справляется, повышается и электрическое сопротивление, что в свою очередь увеличивает потребляемую мощность. А это ведет к увеличению тепловыделения, что приводит к повышению температуры... Кроме того, не стоит забывать, что высокие температуры сокращают срок жизни процессора. Хотя производители и заявляют достаточно высокие максимальные температуры для чипов, стоит всё же по возможности удерживать температуру невысокой.

Кстати, вполне вероятно, что «крутить» вентилятор на более высоких оборотах, когда за счет него увеличится потребление электроэнергии системы, выгоднее по энергопотреблению, чем иметь процессор с высокой температурой, которая повлечет за собой потери электроэнергии на возросшем сопротивлении.

Как видите, температура может и не являться прямым ограничивающим фактором для Turbo Boost, то есть процессор будет иметь вполне приемлемую температуру и не уходить в троттлинг, но косвенно она влияет на другой ограничивающий фактор - потребляемую мощность. Поэтому про температуру забывать не стоит.

Подводя итог, технология Turbo Boost позволяет, при благоприятных внешних условиях работы, повышать частоту процессора сверх гарантированного номинала и тем обеспечивать гораздо более высокий уровень производительности. Это свойство особенно ценно в мобильных системах, где оно позволяет добиться хорошего баланса между производительностью и нагревом.

Но следует помнить, что обратной стороной медали является невозможность оценить (спрогнозировать) чистую производительность процессора, т. к. она будет зависеть от внешних факторов. Вероятно, это одна из причин появления процессоров с «8» на конце названия модели - с «задранными» номинальными частотами работы и выросшим из-за этого TDP. Они предназначены для тех продуктов, для которых стабильная высокая производительность под нагрузкой важнее энергоэффективности.

Во второй части статьи приведено подробное описание всех современных серий и линеек процессоров Intel Haswell, включая технические характеристики всех имеющихся процессоров. А также сделаны выводы о применимости тех или иных моделей.

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали - этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее - это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне - 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение - Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры - это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение - Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение - Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение - Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс - 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение - Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение - Skylake

Следующая архитектура процессоров intel core - шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение - Kaby Lake

Новое, седьмое поколение Core - Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Об авторе

Основатель и администратор сайта сайт, увлекаюсь открытым программным обеспечением и операционной системой Linux. В качестве основной ОС сейчас использую Ubuntu. Кроме Linux интересуюсь всем, что связано с информационными технологиями и современной наукой.

В таблице кратко охарактеризованы основные ранние этапы развития процессоров Intel и их аналогов. Здесь же мы далее перейдем к рассмотрению процессоров Pentium.

Pentium - пятое поколение МП 22 марта 1993 года

Pentium представляет собой суперскалярный процессор с 32-битовой адресной шиной и 64-битовой шиной данных, изготовленный по субмикронной технологии с комплиментарной МОП структурой и состоящий из 3.1 миллионов транзисторов (на площади в 16.25 квадратных сантиметров). Процессор включает следующие блоки.

Таблица с характеристиками процессоров Intel, Cyrix, AMD

Тип процессора Поколение Год выпуска Разрядность шины данных Разрядность Первичная кэш память, Кбайт
Команды Данные
8088 1 1979 8 20 Нет
8086 1 1978 16 20 Нет
80286 2 1982 16 24 Нет
80386DX 3 1985 32 32 Нет
80386SX 3 1988 16 32 8
80486DX 4 1989 32 32 8
80486SX 4 1989 32 32 8
80486DX2 4 1992 32 32 8
80486DX4 5 1994 32 32 8 8
Pentium 5 1993 64 32 8 8
Р-ММХ 5 1997 64 32 16 16
Pentium Pro 6 1995 64 32 8 8
Pentium ll 6 1997 64 32 16 16
Pentium ll Celeron 6 1998 64 32 16 16
Pentium Xeon 6-7 1998
Pentium lll 6 1999 64 32 16 16
Pentium lV 7 2000 64 32 12 8
6 1997-1998 16-32-64 16-32-64 16-64
AMD K6, K6-2 6 1997-1999 16-64 16-64 32 32
AMD K6-3
AMD Athlon 7 1999 64 32 64 64
AMD Athlon 64 8 2003 64 64 64 64
Тип процессора Тактовая частота шины, МГц
8088 4.77-8 4.77-8
8086 4.77-8 4.77-8 0.029 3.0
80286 6-20 6-20 0.130 1.5
80386DX 16-33 16-33 0.27 1.0
80386SX 16-33 16-33 0.27 1.0
80486DX 25-50 25-50 1.2 1.0-0.8
80486SX 25-50 25-50 1.1 0.8
80486DX2 25-40 50-80
80486DX4 25-40 75-120
Pentium 60-66 60-200 3.1-3.3 0.8-0.35
Р-ММХ 66 166-233 4.5 0.6-0.35
Pentium Pro 66 150-200 5.5 0.35
Pentium ll 66 233-300 7.5 0.35-0.25
Pentium ll Celeron 66/100 266-533 7.5-19 0.25
Pentium Xeon 100 400-1700 0.18
Pentium lll 106 450-1200 9.5-44 0.25-0.13
Pentium lV 400 1.4-3.4 ГГц 42-125 0.18-0.09
Cyrix 6 x 86, Media GX, MX, Mll 75 187-233-300-333 3.5 0.35-0.25-0.22-0.18
AMD K6, K6-2 100 166-233- 8.8 0.35-0.25
AMD K6 3 450-550
AMD Athlon 266 500-2200 22 0.25
AMD Athlon 64 400 2 ГГц 54-106 0.13-0.09

Таблица с характеристиками процессоров Intel

Тип процессора Архитектура Год выпуска Кодовое наименование Количество транзисторов, в миллионах Ядро, мм L1-кэш, Кбайт L2-кэш, Кбайт
Pentium P5 1993 Р5 3.1 294 2 x 8 Внешн.
1994-1995 Р54 3.3 148 16 Внешн.
1995-1996 Р54С 3.3 83-91 16 Внешн.
ММХ 1996-1997 Р55С 4.5 140-128 2 x 16 Внешн.
PRO P6 1995-1997 Р6 5.5 306-195 2 x 8 256-1 Мбайт
Pentium 2 1997 Klamath 7.5 203 2 x 16 512
1998 Deschutes 7.5 131-118 2 x 16 512
Pentium 2 1999 Katmai 9.5 123 32 512
1999-2000 Coppermine 28.1 106-90 32 256
2001-2002 Tualatin 44.0 95-80 32 256
Pentium IV Netburst (IA-32e) 2000-2001 Willamette 42.0 217 8+12 256
2002-2004 Northwood 55.0 146-131 8+12 512
2004-2005 Prescott 125.0 122 16+12 1024
2005 Prescott 2M 169 135 12+16 2048
2005-2006 Cedar Mill 188.0 81 12+16 2048
Pentium D Intel Core 2005 Smithfield (2xPrescott) 230.0 206 12+6 x 2 2 x 1.0 Мбайт
2006 Presler (2xCedar Mill) 376.0 162 800 2 x 2.0 Мбайт
Core 2 Duo Intel Core 2006 Alendale 167 111 32 x 2 2-4 Мбайт
Core 2 Extreme 2006 Conroe 291 143 32 x 2 4 Мбайт
Xeon P5, P6, Netburst 1998 Ядро Pentium 2 Смотрите Pentium 2 512-1.0 Мбайт
1999-2000 Tanner Смотрите Pentium 3 512-2.0 Мбайт
2001 Foster Смотрите Pentium 4 512-1.0 Мбайт
Celeron P5, P6, Netburst 1998 Covington 7.5 131 32 Нет
1998-2000 Mendocino 19.0 154 32 128
2000 Coppermine 28.1 105/90 32 128
2002 Tualatin 44.0 80 32 256
2002 Willamette 42.0 217 8 128
2002-2004 Nordwood 55.0 131 8 128
Celeron D Netburst 2004-2006 Prescott 140.0 120 16 256
2004/2006 Cedar Mill 188.0 81 16 512
Itanium IA-64 1999 Merced/Itanic 30.0-220 2-4 Мбайт L3
Itanium 2 2003 Madison 410.0 6.0 Мбайт L3
Itanium (двухъядерный) 2006 Montecito 1720.0 596 16+16 Кбайт L1 1 Мбайт+256 Кбайт L2 24 Мбайт L3
Тип процессора Размер минимальной структуры, мкм Тактовая частота шины, МГц Тактовая частота процессора, МГц Потребляемая мощность, Вт Интерфейс
Pentium 0.8 60-66 60-66 14-16 Socket 4
0.6 50-66 75-120 8-12 Socket 5.7
0.35 66 133-200 11-15 Socket 7
ММХ 0.28 66 166-233 13-17 Socket 7
PRO 0.60-0.35 60-66 150-200 37.9 Socket 8
Pentium 2 0.35 66 233-300 34-43 Slot1
0.25 66-100 266-450 18-27 Slot 1
Pentium 3 0.25 100-133 450-600 28-34 Slot 1
0.18 100 650-1.33 ГГц 14-37 Slot 1/Socket 370
0.13 133 1.0-1.4 ГГц 27-32 S 370
Pentium IV 0.18 400 1.3-2.0 ГГц 48-66 Socket 423/478
0.13 Си 400-800 1.6-3.4 ГГц 38-109 Socket 478
0.09 533-800 2.66-3.8 ГГц 89-115 Socket 478/LGA775
0.09 800-1066 2.8-3.73 84-118 LGA775
0.065 800 3.0-3.8 80-86 LGA775
Pentium D 0.09 533-800 2.8-3.2 ГГц 115-130 LGA775
0.065 80-1066 3.4 ГГц 95-130 LGA775
Core 2 Duo 0.065 80-1066 1.8-2.66 ГГц 45-65 LGA775
Core 2 Extreme 0.065 1066 2.9-3.2 ГГц 75 LGA775
Xeon 0.18 100 400 Slot2
0.13 100-133 500-733
0.09-0.65 1.4-1.7 ГГц
Celeron 0.25 66 266-300 16-18 Slot 1
0.25 66 300-533 19-26 Socket 370/Slot 1
0.18 100 533-1.1 ГГц 11-33 Socket-370
0.13 100 1.0-1.4 27-35 S 370
0.18 400 1.7-1.8 ГГц 63-66 S478
0.13 400 2.0-2.8 ГГц 59-68 S 478
Celeron D 0.09 533 2.133-3.33 ГГц 73-84 S478/LGA775
0.065 533 3.33 ГГц 86 LGA775
Itanium 0.18 733-800 800-1.0 ГГц
Itanium 2 0.13 1.5 ГГц
Itanium (двухъядерный) 0.09 2 x 667 1.4-1.6 ГГц 75-104

Ядро Core

Основное исполнительное устройство. Производительность МП при тактовой частоте 66 МГц составляет около 112 миллионов команд в секунду (MIPS). Пятикратное повышение (по сравнению с 80486 DX) достигалось благодаря двум конвейерам, позволяющим выполнить одновременно несколько команд. Это два параллельных 5-ступенчатых конвейера обработки целых чисел, которые позволяют читать, интерпретировать, исполнять две команды одновременно.

  • а - Pentium ММХ, интерфейс Socket 7;
  • б - Celeron, упаковка Single Edge Processor Package (SEPP)/Slot 1;
  • в - AMD Athlon (формат Slot А);
  • г - основные компоненты процессора Pentium.

Команды над целыми числами могут выполняться за один такт синхронизации. Эти конвейеры неодинаковы: U-конвейер выполняет любую команду системы команд семейства 86; V-конвейер выполняет только «простые» команды, то есть команды, которые полностью встроены в схемы МП и не требуют микропрограммного управления (microcode) при выполнении.

Для постоянной загрузки этих конвейеров из кэш памяти требуется широкая полоса пропускания. Естественно, для отмеченного случая совмещенный буфер команд и данных не подходит. Pentium имеет разделенный буфер команд и данных - двухвходовые (атрибут RISC-процессоров). Обмен данными через кэш данных выполняется совершенно независимо от процессорного ядра, а буфер команд связан с ним через высокоскоростную 256-разрядную внутреннюю шину. Каждая кэш память имеет емкость 8 Кбайт, и они допускают одновременную адресацию. Поэтому программа в одном такте синхронизации может извлечь 32 байта (256: 8=32) команд и произвести два обращения к данным (32 х 2=64).

Предсказатель переходов (Branch Predictor)

Пытается угадать направление ветвления программы и заранее загрузить информацию в блоки предвыборки и декодирования команд.

Буфер адреса переходов (Branch Target Buffer ВТВ)

Буфер адреса переходов обеспечивает динамическое предсказание переходов. Он улучшает выполнение команд путем запоминания состоявшихся переходов (256 последних переходов) и с опережением выполняет наиболее вероятный переход при выборке команды ветвления. Если предсказание верно, то эффективность увеличивается, а если нет, то конвейер приходится сбрасывать полностью. Согласно данным Intel, вероятность правильного предсказания переходов в процессорах Pentium составляет 75-90 %.

Блок плавающей точки (Floating Point Unit)

Выполняет обработку чисел с плавающей точкой. Обработка графической информации, мультимедиа-приложений и интенсивное использование персонального компьютера для решения вычислительных задач требуют высокой производительности при выполнении операций с плавающей точкой. Аппаратная реализация (вместо микропрограммной) основных арифметических операций (+, х и /) выполняется автономными высокопроизводительными блоками, и 8-ступенчатый конвейер позволяет выдавать результаты через каждый такт.

Кэш память 1-го уровня (Level 1 cache)

Процессор имеет два банка памяти по 8 Кбайт, 1-й - для команд, 2-й - для Данных, которые обладают большим быстродействием, чем более емкая внешняя кэш память (L2 cache).

Интерфейс шины (Bus Interface

Передает в центральный процессор поток команд и данных, а также передает данные из центрального процессора.

В процессоре Pentium введен режим управления системой SMM (System Management Mode). Этот режим дает возможность реализовывать системные функции очень высокого уровня, включая управление питанием или защиту, прозрачные для операционной системы и выполняющихся приложений.

Pentium Pro (1 ноября 1995 года)

Pentium Pro (шестое поколение МП) имеет три конвейера, каждый из которых включает 14 ступеней. Для постоянной загрузки имеется высокоэффективный четырехвходовый кэш команд и высококачественная система предсказания ветвлений на 512 входов. Дополнительно для повышения производительности была применена буферная память (кэш) второго уровня емкостью 256 Кбайт, расположенная в отдельном чипе и смонтированная в корпусе центрального процессора. В результате стала возможной эффективная разгрузка пяти исполнительных устройств: два блока целочисленной арифметики; блок чтения (load); блок записи (store); FPU (Floating-Point Unit - устройство арифметических операций с плавающей точкой).

Pentium Р55 (Pentium ММХ)

8 января 1997 года Pentium ММХ -версия Pentium с дополнительными возможностями. Технология ММХ должна была добавить/расширить мультимедийные возможности компьютеров. ММХ объявлен в январе 1997 года, тактовая частота 166 и 200 МГц, в июне того же года появилась версия 233 МГц. Технологический 0.35-мкм процесс, 4.5 миллионов транзисторов.

Pentium 2 (7 мая 1997 года)

Процессор представляет собой модификацию Pentium Pro с поддержкой возможностей ММХ. Была изменена конструкция корпуса - кремниевую пластину с контактами заменили на картридж, увеличена частота шины и тактовая частота, расширены ММХ-команды. Первые модели (233-300 МГц) производились по 0.35-мкм технологии, следующие - по 0.25-мкм. Модели с частотой 333 МГц выпущены в январе 1998 года и содержали 7.5 миллионов транзисторов. В апреле того же года появились версии 350 и 400 МГц, а в августе - 450 МГц. Все Р2 имеют кэш второго уровня объемом 512 Кбайт. Есть также модель для ноутбуков - Pentium 2 РЕ, а для рабочих станций - Pentium 2 Хеоn 450 МГц.

Pentium 3 (26 февраля 1999 года)

РЗ - один из самых мощных и производительных процессоров Intel, но в своей конструкции он мало чем отличается от Р2, увеличена частота и добавлено около 70 новых команд (SSE). Первые модели объявлены в феврале 1999 года, тактовые частоты - 450.500, 550 и 600 МГц. Частота системной шины 100 МГц, 512 Кбайт кэша второго уровня, технологический 0.25-мкм процесс, 9.5 миллионов транзисторов. В октябре 1999 года также выпущена версия для мобильных компьютеров, выполненная по 0.18-мкм технологии с частотами 400.450, 500.550, 600.650, 700 и 733 МГц. Для рабочих станций и серверов существует РЗ Хеоn, ориентированный на системную логику GX с объемом кэша второго уровня 512 Кбайт, 1 Мбайт или 2 Мбайт.

Pentium 4 (Willamette, 2000 года; Northwood, 2002 года)

Семейства Pentium 2, Pentium 3 и Celeron имеют одинаковое строение ядра, отличаясь в основном размером и организацией кэша второго уровня и наличием набора команд SSE, появившегося в Pentium 3.

Достигнув частоты в 1 ГГц, Intel столкнулась с проблемами в дальнейшем наращивании частоты своих процессоров - Pentium 3 на 1.13 ГГц даже пришлось отзывать в связи с его нестабильностью.

  • a - Willamette, 0.18 мкм;
  • б - Northwood, 0.13 мкм;
  • в - Prescott, 0.09 мкм;
  • г - Smithfield (2 х Prescott 1М)

Проблема в том, что латентности (задержки), возникающие при обращении к тем или иным узлам процессора, в Р6 уже слишком велики. Таким образом появился Pentium IV - в его основе лежит архитектура, названная Intel NetBurst architecture.

Архитектура NetBurst имеет в своей основе несколько инноваций, в комплексе позволяющих добиться конечной цели - обеспечить запас быстродействия и будущую наращиваемость для процессоров семейства Pentium IV. В число основных технологий входят:

  • Hyper Pipelined Technology - конвейер Pentium IV включает 20 стадий;
  • Advanced Dynamic Execution - улучшенное предсказание переходов и исполнение команд с изменением порядка их следования (out of order execution);
  • Trace Cache - для кэширования декодированных команд в Pentium IV используется специальный кэш;
  • Rapid Execute Engine - ALU процессора Pentium IV работает на частоте, вдвое большей, чем сам процессор;
  • SSE2 - расширенный набор команд для обработки потоковых данных;
  • 400 МГц System Bus - новая системная шина.

Pentium IV Prescott (февраль 2004 года)

В начале февраля 2004 года Intel анонсировала четыре новых процессора Pentium IV (2.8; 3.0; 3.2 и 3.4 ГГц), основанных на ядре Prescott, которое включает ряд нововведений. Вместе с выпуском четырех новых процессоров Intel представила процессор Pentium IV 3.4 ЕЕ (Extreme Edition), основанный на ядре Northwood и имеющий 2 Мбайт кэш памяти третьего уровня, а также упрощенную версию Pentium IV 2.8 А, основанную на ядре Prescott с ограниченной частотой шины (533 МГц).

Prescott выполнен по технологии 90 нм, что позволило уменьшить площадь кристалла, причем число транзисторов было увеличено более чем в 2 раза. В то время как ядро Northwood имеет площадь 145 квадратных миллиметров и на нем размещено 55 миллионов транзисторов, ядро Prescott имеет площадь 122 квадратных миллиметров и содержит 125 миллионов транзисторов.

Перечислим некоторые отличительные особенности процессора.

Новые SSE-команд

Intel представила в Prescott новую технологию SSE3, которая включает 13 новых потоковых команд, которые увеличат производительность некоторых операций как только программы начнут их использовать. SSE3 является не просто расширением SSE2, так как добавляет новые команды, но и позволяет облегчить и автоматизировать процесс оптимизации готовых приложений средствами компилятора. Другими словами, разработчику программного обеспечения не надо будет переписывать код программы, необходимо будет только перекомпилировать ее.

Увеличенный объем кэш памят

Одним из важнейших (с точки зрения производительности) дополнений можно считать увеличенный до 1 Мбайт кэш второго уровня. Объем кэш памяти первого уровня также был увеличен до 16 Кбайт.

Улучшенная предвыборка данны

Ядро Prescott имеет улучшенный механизм предвыборки данных.

Улучшенный Hyperthreadin

В новую версию включено множество новых особенностей, способных оптимизировать многопоточное выполнение различных операций. Единственный недостаток новой версии заключается в необходимости перекомпиляции программного обеспечения и обновления операционной системы.

Увеличенная длина конвейер

Для увеличения рабочей частоты будущих процессоров ядро Prescott имеет увеличенную с 20 до 31 ступени длину конвейера. Увеличение длины конвейера негативно сказывается на производительности в случае неправильного предсказания ветвлений. Для компенсации увеличения длины конвейера была улучшена технология предсказания ветвлений.

Проблемы архитектуры NetBurst

Выпуск ядра Prescott, для которого Intel использовала технологический 90 нанометровый процесс, вскрыл ряд труднопреодолимых проблем. Первоначально NetBurst была объявлена специалистами Intel как архитектура с существенным запасом производительности, который со временем можно будет реализовать посредством постепенного наращивания тактовой частоты. Однако на практике оказалось, что увеличение тактовой частоты процессора влечет за собой неприемлемое возрастание тепловыделения и энергопотребления. Причем происходящее параллельно развитие технологии производства полупроводниковых транзисторов не позволяло эффективно бороться с ростом электрических и тепловых характеристик. В результате третье поколение процессоров с архитектурой NetBurst (Prescott) осталось в истории процессоров как одно из самых «горячих» (процессоры, построенные на этом ядре, могли потреблять и соответственно выделять до 160 Вт, получив кличку «кофеварки»), при том, что их тактовая частота не поднялась выше 3.8 ГГц. Высокое тепловыделение и энергопотребление вызвали множество смежных проблем. Процессоры Prescott требовали использования специальных материнских плат с усиленным стабилизатором напряжения и особых систем охлаждения с повышенной эффективностью.

Проблемы с высоким тепловыделением и энергопотреблением были бы не столь заметны, если бы не то обстоятельство, что при всем при этом процессоры Prescott не смогли продемонстрировать высокой производительности, благодаря которой можно было бы закрыть глаза на упомянутые недостатки. Заданный конкурирующими процессорами AMD Athlon 64 уровень быстродействия оказался для Prescott практически недостижимым, в результате этого данные центрального процессора стали восприниматься как провал Intel.

Поэтому не вызвало особого удивления, когда оказалось, что преемники NetBurst будут основываться на принципе эффективного энергопотребления, принятом в мобильной микроархитектуре Intel и воплощенном в семействе процессоров Pentium М.

Smithfield

По существу, ядро центрального процессора Smithfield - не более чем пара кристаллов Prescott 1М (90 нм), связанных вместе. Каждое ядро имеет собственную кэш память L2 (1 Мбайт), к которой может обратиться другое ядро через специальную интерфейсную шину. Результат - кристалл 206 квадратных миллиметров, содержащий 230 миллионов транзисторов.

Все двухъядерные чипы настольных персональных компьютеров, как ожидается, будут поддерживать технологии, введенные в последние месяцы 2004 года как инновации Pentium 4 Extreme Edition - ЕМ64Т, E1ST, XD bit и Vandepool:

  • технология «Увеличенная Память 64» (Enhanced Memory 64 - EM64T) обеспечивает расширения на 64 бита архитектуры х86; Enhanced Intel SpeedSTep (EIST) идентичен механизму, осуществленному в процессорах Intel мобильных персональных компьютеров, который позволяет процессору уменьшать его тактовую частоту, когда не требуется высокая загрузка, таким образом значительно сокращая нагрев центрального процессора и потребление мощности; XD bit - технология «невыполнимых битов» EXecute Disable Bit - NX-битов;
  • Vandepool-технология Intel (также известна как технология виртуализации - VT) позволяет одновременно выполнять несколько операционных систем и приложений в независимых разделах памяти, при этом единственная компьютерная система функционирует как несколько виртуальных машин.

В мае 2005 года вышли три чипа Pentium D Smithfield со скоростями 2.8, 3.0 и 3.2 ГГц и номерами моделей 820.830 и 840 соответственно.

Pentium D. Первые чипы Pentium D, представленные в мае 2005 года были построены на 90 нанометровой технологии Intel и имели номера моделей в ряду 800. Самый быстрый из выпущенных центральных процессоров имел скорость 3.2 ГГц. В начале 2006 года был выпущен образец Pentium D с номерами 900 и кодовым наименованием «Presler», изготовленный на технологическом 65 нанометров процессе Intel.

Чипы Presler включают пару ядер Cedar Mill. Однако, в отличие от предыдущего Pentium D Smithfield, здесь два ядра физически разделены. Включение двух дискретных кристаллов в единый пакет обеспечивает гибкость производства, позволяя использовать тот же самый кристалл как для одноядерного Cedar Mill, так и для двухядерного центрального процессора Presler. Кроме того, производственные расходы улучшаются, поскольку при обнаружении дефекта выбраковывается только один кристалл, а не двухядерный пакет.

  • а - Smithfield;
  • 6 - Presler.

Новая технология позволила увеличить не только тактовую частоту, но также и число транзисторов на кристалле. Как следствие, Presler имеет 376 миллионов транзисторов сравнительно с 230 миллионов для Smithfield. В то же самое время размер кристалла был уменьшен c 206 до 162 квадратных миллиметров. В результате удалось увеличить кэш память L2 Presler. В то время как его предшественник использовал две кэш памяти L2 по 1 Мбайт, процессоры Presler включают модули кэш памяти L2 по 2 Мбайта. Размещение нескольких ядер центрального процессора на одном кристалле имеет преимущество - кэш память может работать при намного более высокой частоте.

К весне 2006 года самый быстрый объявленный чип основного направления Pentium D был моделью 950 с частотой 3.4 ГГц. Считается, что Pentium D будет последним процессором, несущим фирменный знак Pentium, основного изделия Intel с 1993 года

Процессоры Pentium Хеоn

В июне 1998 года Intel начинает выпускать центральный процессор Pentium 11 Хеоn, работающий на частоте 400 МГц. Технически Хеоn представлял собой комбинацию технологий Pentium Pro и Pentium 2 и был разработан, чтобы предложить повышенную эффективность, требуемую в критических приложениях для рабочих станций и серверов. Используя интерфейс Slot 2, Хеоn имели почти вдвое больший размер, чем Pentium 2, прежде всего из-за увеличенной кэш памяти L2.

В ранних образцах чип снабжался кэш памятью L2 на 512 Кбайт или 1 Мбайт. Первый вариант был предназначен для рынка рабочих станций, второй - для серверов. Версия на 2 Мбайт вышла позже, в 1999 году Подобно центральному процессору Pentium 2 на 350-400 МГц, FSB (первичная шина) работала на частоте 100 МГц.

Основное усовершенствование сравнительно с Pentium 2 - кэш память L2 работала на частоте ядра центрального процессора, в отличие от конфигураций на основе Slot 1, которые ограничивали кэш L2 половиной частоты центрального процессора, что позволяло Intel использовать более дешевую память Burst SRAM в качестве кэша, вместо того чтобы применять обычную SRAM.

Другое ограничение, которое удалось преодолеть посредством Slot 2, был «двухпроцессорный предел». При использовании архитектуры SMP (симметрический мультипроцессор) процессор Pentium 2 оказался неспособен поддерживать системы с более чем двумя центральными процессорами, в то время как системы, основанные на Pentium 2 Хеоn, могли объединять четыре, восемь или более процессоров.

В дальнейшем были разработаны различные системные платы и чипсеты для АРМ и серверов - 440GX был построен на базе основной архитектуры чипсета 440ВС и предназначен для рабочих станций, a 450NX, с другой стороны, был разработан в основном для рынка серверных применений.

Вскоре после выхода Pentium 3 весной 1999 года был выпущен Pentium 3 Хеоn (кодовое имя Tanner). Это был базовый Pentium Хеоп с добавлением нового набора команд Streaming SIMD Extensions (SSE). Нацеленный на рынок серверов и рабочих станций, Pentium 3 Хеоп первоначально выпускался на 500 МГц и с кэш памятью L2 512 Кбайт (или 1.0-2.0 Мбайт). Осенью 1999 года Хеоn начал выпускаться с ядром «Cascade» (0.18 мкм), со скоростями, увеличивающимися от начальных 667 МГц до 1 ГГц к концу 2000 года

Весной 2001 года выпущен первый Хеоn на основе Pentium IV со скоростями 1.4, 1.5 и 1.7 ГГц. Базирующийся на ядре Foster, он был идентичен стандарту Pentium IV, за исключением разъема microPGA Socket 603.

Itanium (архитектура IA-64)

Данная архитектура была объявлена Intel в мае 1999 года Типичным представителем архитектуры является центральный процессор Itanium. Процессоры IA-64 располагают мощными вычислительными ресурсами, включая 128 регистров для целых чисел, 128 регистров с плавающей запятой, и 64 регистра предикации наряду с множеством регистров специального назначения. Команды должны группироваться для параллельного выполнения различными функциональными модулями. Набор команд оптимизирован, чтобы обеспечить вычислительные потребности криптографии, видеокодирования и других функций, которые все более необходимы следующим поколениям серверов и рабочих станций. В процессорах IA-64 также поддерживаются и развиваются ММХ-технологии и SIMD-расширения.

Архитектура IA-64 не является ни 64-битовой версией архитектуры Intel IA-32, ни адаптацией предложенной Hewlett-Packard архитектуры PA-RISC на 64 бита, а представляет собой полностью оригинальную разработку. IA-64 - это компромисс между CISC и RISC, попытка сделать их совместимыми - существуют два режима декодирования команд - VLIW и CISC. Программы автоматически переключаются в необходимый режим исполнения.

Основные инновационные технологии IA-64: длинные слова команд (long instruction words - LIW), предикаты команд (instruction predication), устранение ветвлений (branch elimination), предварительное чтение данных (speculative loading) и другие ухищрения для того, чтобы «извлечь больше параллелизма» из кода программ.

Таблица основных различий архитектур IA-32 и IA-64

Основная проблема архитектуры IА-64 заключается в отсутствии встроенной совместимости с х86 кодом, что не позволяет процессорам IA-64 эффективно работать с программным обеспечением, разработанным за последние 20-30 лет. Intel оборудует свои процессоры IA-64 (Itanium, Itanium 2 и так далее) декодером, который преобразует инструкции х86 в команды IA-64.

Раньше, выбирая процессор для своего компьютера, пользователи в основном обращали внимание на бренд и на тактовую частоту. Сегодня ситуация немного изменилась. Нет, вам и сегодня нужно будет сделать выбор между двумя производителями – Intel и AMD, но на этом дело не закончится. Времена изменились и обе компании выпускают хороший качественный продукт, который может удовлетворить потребности практически любых требовательных пользователей.

Однако у каждого изделия производителей есть свои сильные и слабые стороны, проявляющиеся в быстродействии различных программных приложений, а также в разбросе цены и производительности. Плюс сегодня процессор с намного меньшей тактовой частотой может спокойно обойти более быстрого собрата, а многоядерный процессор может оказаться медленнее процессора созданного на основе старой архитектуры, при определенной нагрузке на систему.

Мы расскажем вам, чем отличаются друг от друга современные процессоры, а выбор уже за вами.

Характеристики современных процессоров

1. Тактовая частота процессора

Этот показатель, по которому определяется количество тактов (операций) которое может сделать процессор за секунду времени. Раньше этот показатель был решающим при выборе компьютера и субъективной оценке производительности процессора.

Сейчас же, настали времена, когда этот показатель у подавляющего большинства современных процессоров достаточен для выполнения стандартных задач, поэтому при работе со многими приложениями значительного роста производительности, из-за более высокой тактовой частоты не будет. Теперь производительность определяется другими параметрами.

2. Количество ядер

Большинство современных компьютерных процессоров имеет по два или более ядра, исключение могут составить только самые бюджетные модели. Здесь вроде все логично – больше ядер, выше производительность, но на деле оказывается, что не так все просто. В некоторых приложениях повышение производительности действительно может быть обусловлено количеством ядер, но в других приложениях многоядерный процессор может уступить своему предшественнику с меньшим количеством ядер.

3 Объем кэш-памяти у процессоров

Для того чтобы повысить скорость обмена данными с оперативной памятью компьютера, на производимые процессоры устанавливают дополнительные блоки памяти с высокой скоростью (так называемые кэши первого, второго, третьего уровней, или LI, L2, L3 cache). Опять, кажется все логично – чем больше объем кэш-памяти в процессоре, тем выше его производительность.

Но тут опять всплывают разные модели процессоров, которые, как правило, отличаются между собой сразу несколькими техническими параметрами, поэтому выявить прямую зависимость производительности от размера кэш-памяти чипа практически не представляется возможным.

Более того, от специфики кода программных приложений также многое зависит. Некоторые приложения при большом кэше, дают заметный прирост , другие наоборот начинают работать хуже из-за программного кода.

4 Ядро

Ядро является основой любого процессора, от которой и отталкиваются другие характеристики. Можно встретить два процессора с похожими на первый взгляд техническими характеристиками (количество ядер, тактовая частота), но с разной архитектурой и они будут показывать в тестах производительности и программных приложениях абсолютно разные результаты.

По традиции, процессоры, созданные на базе новых ядер, намного лучше для работы с различными программами и поэтому демонстрируют лучшую производительность по сравнению с моделями, созданными на основе устаревших технологий (даже если тактовые частоты совпадают).

5 Технический процесс

Это масштабы современных технологий, которые собственно и определяют размеры полупроводниковых элементов, служащих во внутренних цепях процессора. Чем миниатюрней эти элементы, тем совершенней применяемая технология. Это совсем не означает, что современный процессор, созданный на основе современного технического процесса, будет быстрее представителя старой серии. Просто он может, например, греться меньше, а значит, и работать более эффективно.

6 Front Side Bus (FSB)

Частота системной шины – это скорость, с которой ядро процессора обменивается данными с ОЗУ, дискретной видеокартой, и периферийными контролерами материнской платы компьютера. Здесь все просто. Чем выше пропускная способность, тем соответственно выше у компьютера производительность (при прочих равных технических характеристиках рассматриваемых компьютеров).

Расшифровка названий процессоров Intel

Научиться ориентироваться в огромной номенклатуре различных названий процессоров компании Intel довольно просто. Вначале нужно разобраться с позиционированием самих процессоров:

Core i7 – на данный момент топовая линия компании

Core i5 – отличаются высокой производительностью

Core i3 – невысокая цена, высокая/средняя производительность

Все процессоры Core i серии построены на основе ядра Sandy Bridge и относятся ко второму поколению процессоров Intel Core. Названия большинства моделей начинаются с цифры 2, а более современные модификации, созданные на основе последнего ядра Ivy Bridge, маркируются цифрой 3.

Теперь очень легко определить, какого поколения тот или иной процессор, и на основе какого ядра он создан. К примеру, Core i5-3450 принадлежит к третьему поколению на ядре Ivy Bridge, а Core i5-2310 – соответственно второе поколение на основе ядра Sandy Bridge.

Когда вы знаете тип ядра процессора, то уже можете приблизительно судить не только о его возможностях, но и о потенциальном тепловыделении при загрузке. Представители третьего поколения греются намного меньше своих предшественников благодаря более современному техпроцессу.

Помимо цифр, в названиях процессоров иногда используют суффиксы:

К – для процессоров с разблокированным коэффициентом умножения (это дает опытным пользователям, разбирающимся в компьютерах, самостоятельно разгонять процессор)

S -для продуктов с повышенной энергоэффективностью, Т – для самых экономичных процессоров.

Intel Core 2 Quad

Линия популярных четырехьядерных процессоров на базе уже устаревшего ядра Yorkfield (техпроцесс 45 нм), благодаря привлекательной низкой цене и достаточно высокой производительности, линия этих процессоров актуальна и в сегодняшние дни.

Intel Pentium и Celeron

При маркировке бюджетных процессоров Pentium и Celeron используют обозначения G860, G620 и некоторые другие. Чем выше число после буквы, тем соответственно процессор производительнее. Если маркировочные числа отличаются незначительно, то, скорее всего, речь идет о различных модификациях чипов в одной производственной линейке, обычно ними небольшая и заключается только в нескольких сотнях мегагерц тактовой частоты ядра. Иногда различаются и объем кэш-памяти, и даже в количество ядер, а это уже намного сильнее влияет на различия в мощности и производительности. Поэтому, будет лучше, если вы не будете полагаться на маркировку чипов, а уточните все технические характеристики на официальном сайте продавца или производителя, ведь это займет мало времени, но поможет сохранить нервы и деньги.

Показательным примером может являться то, что различающиеся по цене лишь на 200 рублей процессоры Celeron G440 и Celeron G530 на самом деле имеют разное количество ядер (Celeron G440 – одно, Celeron G530 – два), разную тактовую частоту ядра (у G530 на 800 МГц больше), также у G530 вдвое больший кэш. Однако тепловыделение у последнего процессора почти в два раза больше, хотя оба процессора созданы на основе одного ядра Sandy Bridge.

Технологии процессоров Intel

Процессоры от компании Intel, сегодня считаются самыми производительными, благодаря семейству Core i7 Extreme Edition. В зависимости от модели они могут иметь до 6 ядер одновременно, тактовую частоту до 3300 МГц и до 15 Мб кэш памяти L3. Самые популярные ядра в сегменте настольных процессоров создаются на основе Intel – Ivy Bridge и Sandy Bridge.

Также как и у конкурента, в процессорах компании Intel применяются фирменные технологии собственной разработки для повышения эффективности работы системы.

1. Hyper Threading – За счет этой технологии, каждое физическое ядро процессора способно обрабатывать по два потока вычислений одновременно, получается, что число логических ядер фактически удваивается.

2. Turbo Boost – Позволяет пользователю совершить автоматический разгон процессора, не превышая при этом максимально допустимый предел рабочей температуры ядер.

3. Intel QuickPath Interconnect (QPI) – Кольцевая шина QPI соединяет все компоненты процессора, за счет этого сводятся к минимуму все возможные задержки при обмене информацией.

4. Visualization Technology – Аппаратная поддержка решений виртуализации.

5. Intel Execute Disable Bit – Практически , она обеспечивает аппаратную защиту от возможных вирусных атак, в основе которых лежит технология переполнения буфера.

6. Intel SpeedStep -Инструмент позволяющий изменять уровень напряжения и частоты в зависимости от создаваемой нагрузки на процессор.

Расшифровка названий процессоров AMD

AMD FX

Топовая линейка компьютерных многоядерных процессоров со специально снятым ограничением на множитель (ради возможности самостоятельного разгона) для обеспечения высокой производительности при работе с требовательными приложениями. Исходя из первой цифры названия, можно сказать, сколько ядер установлено в процессор: FX-4100 – четыре ядра, FX-6100 соответственно шесть ядер и FX-8150 имеет восемь ядер. В линейке этих процессоров существует и несколько модификаций, несколько отличающихся тактовой частотой (у процессора FX-8150 она на 500 МГц выше, чем у процессора FX-8120). AMD А

Линия со встроенным внутрь процессора графическим ядром. Цифровое обозначение в названии указывает на принадлежность к конкретному классу производительности: АС – производительность, достаточная для подавляющего большинства стандартных ежедневных задач, А6 – производительность, достаточная для создания видеоконференции в высоком разрешении HD, А8 – производительность, достаточная для уверенного просмотра Blu-ray-фильмов с эффектом 3D или запуска современных 3D-игр в мультидисплейном режиме (с возможностью одновременного подключения четырех мониторов).

AMD Phenom II и Athlon II

Самые ранние процессоры из линейки AMD Phenom II были официально выпущены еще в далеком 2010 году, но благодаря низкой цене и достаточно большой производительности они и сегодня пользуются определенной популярностью.

На количество ядер у процессора указывает цифра в названии следующая сразу после символа X. К примеру, маркировка процессора AMD Phenom II Х4 Deneb говорит нам, что он принадлежит к семейству процессоров Phenom II, имеет четыре ядра и создан на базе ядра Deneb. Полностью аналогичные правила маркировки можно увидеть и в серии Athlon.

AMD Sempron

Под этим названием производитель выпускает бюджетные процессоры, предназначенные для настольных офисных компьютеров.

Технологии процессоров AMD

Самые топовые модели процессоров из линейки AMD FX, созданные на основе нового ядра Zambezi, могут предложить требовательному пользователю восемь ядер, 8-мегабайтный кэш L3 и тактовую частоту процессора до 4200 М Гц.

Большинство современных процессоров созданных компанией AMD по умолчанию поддерживают следующие технологии:

1. AMD Turbo CORE – Эта технология призвана автоматически регулировать производительность всех ядер процессора, за счет управляемого разгона (подобная технология у компании Intel имеет название TurboBoost).

2. AVX (Advanced Vector Extensions), ХОР и FMA4 – Инструмент, имеющий расширенный набор команд, специально созданных для работы с числами с плавающей точкой. Однозначно инструментарий.

3. AES (Advanced Encryption Standard) – В программных приложениях использующих шифрование данных, повышает производительность.

4. AMD Visualization (AMD-V) – Эта технология виртуализации, помогает обеспечить разделение ресурсов одного компьютера между несколькими виртуальными машинами.

5. AMD PowcrNow! – Технология управления питанием. Она помогают пользователю добиться повышения производительности, за счет динамической активации и деактивации части процессора.

6. NX Bit – Уникальная антивирусная технология, помогающая предотвратить инфицирование персонального компьютера определенными видами вредоносных программ.

Сравнение производительности процессоров

Просматривая прайс-листы с ценами и характеристиками современных процессоров, можно прийти в настоящее замешательство. Удивительно, но процессор большим количеством ядер на борту и с большей тактовой частотой может стоить дешевле, чем экземпляры с меньшим количеством ядер и с меньшими тактовыми частотами. Все дело в том, что настоящая производительность процессора зависит не только от основных характеристик, но и от эффективности работы самого ядра, поддержки современных технологий и конечно от возможностей самой платформы, для которой создан процессор (можно вспомнить про логику системной платы, про возможности видеосистемы, про пропускную способность шины и многое другое).

Именно поэтому, нельзя судить о производительности процессора, на основе одних только характеристик написанных на бумаге, нужно иметь данные и о результатах независимых тестов производительности (желательно с теми приложениями, с которыми планируется постоянно работать). В зависимости от типа создаваемой нагрузки похожие процессоры могут выдавать совершенно разные результаты, при работе с одними и теми же программами. Как же неподготовленному человеку разобраться, какой тип процессора подходит именно для него? Давайте попробуем в этом разобраться, проведя сравнительное тестирование процессоров с одинаковой розничной стоимостью в различных программных приложениях.

1. Работа с офисным программным обеспечением. При использовании привычных офисных приложений и браузеров прирост производительности можно достичь за счет большей тактовой частоты процессора. Большой объем кэш памяти или большое число ядер не даст ожидаемого прироста скорости работы приложений данного типа. К примеру, более дешевый по сравнению с Intel Celeron G440 процессор AMD Sempron 145 на основе 45-нм ядра Sargas показывает в тестах с офисными приложениями лучшую производительность, а ведь продукт Intel создан на более современном 32-нм ядре Sandy Bridge. Тактовая частота – вот залог успеха, при работе с офисными приложениями.

2. Компьютерные игры. Современные 3D-игры с выставленными на максимум настройками – одни из самых требовательных к комплектующим компьютера. Процессоры показывают прирост производительности в современных компьютерных играх по мере роста количества ядер и увеличения объема кэш-памяти (конечно если при этом, оперативная память и видеосистема удовлетворяют всем современным требованиям) . Взять хотя бы процессор AMD FX-8150 с 8 ядрами и 8 мегабайтами кэш-памяти третьего уровня. При тестировании он выдает лучший результат в компьютерных играх, чем практически одинаковый по цене Phenom II Х6 Black Thuban 1100T с 6 ядрами, но с 6 мегабайтами кэш-памяти третьего уровня. Как уже было подмечено выше, при тестировании офисных программ картина с производительностью прямо противоположная.

Если начать тестировать производительность в современных играх двух близких по цене процессоров марок FX-8150 и Core i5-2550К, то окажется, что последний демонстрирует лучшие результаты, несмотря на то, что у него меньше ядер, и он имеет меньшую тактовую частоту и даже объем кэш памяти у него меньше. Скорее всего, здесь, с точки зрения эффективности, основную роль сыграла более удачная архитектура самого ядра.

3. Растровая графика. Популярные графические приложения, такие как Adobe Photoshop, ACDSee и Image-Magick изначально созданы разработчиками с отличной многопоточной оптимизацией, это значит, что при постоянной работе с этими программами дополнительные ядра не будут лишними. Существует и большое количество программных пакетов, абсолютно не использующих многоядерность (Painishop или GIMP). Получается, нельзя однозначно утверждать, какой технический параметр у современных процессоров больше других влияет на увеличение скорости работы растровых редакторов . Разные программы, работающие с растровой графикой, требовательны к самым различным параметрам, таким как тактовая частота, количество ядер (особенно относится к реальной производительности одного ядра), и даже к объему кэш-памяти. Тем не менее, недорогой Core 13-2100 в тестах показывает намного большую производительность в такого рода приложениях, чем, например, тот же FX-6100, и это даже несмотря на то, что базовые характеристики у Intel немного проигрывают.

4. Векторная графика. В наше время процессоры очень странно проявляют себя, работая с такими популярными программными пакетами как CorelDraw и Illustrator. Общее количество ядер процессора практически никак не влияет на производительность приложений, это говорит об отсутствии у данного вида программного обеспечения многопоточной оптимизации. В теории для нормальной работы с векторными редакторами двухядерного процессора даже будет много, так как здесь на первый план выходит тактовая частота.

Примером может служить AMD Аб-3650, который с четырьмя ядрами, но с маленькой тактовой частотой не может соперничать в векторных редакторах с бюджетным двухядерным Pentium G860, у которого тактовая частота немного выше (при этом стоимость процессоров практически одинаковая).

5. Кодирование аудио. При работе с аудиоданными можно наблюдать абсолютно противоположные результаты. При кодировании звуковых файлов производительность растет по мере увеличения количества ядер процессора и по мере увеличения тактовой частоты. Вообще, для совершения операций такого плана вполне достаточно даже 512 мегабайт кэш-памяти, так как при обработке потоковых данных этот вид памяти практически не используется. Наглядным примером служит восьмиядерный процессор FX-8150, который при процессе конвертации аудиофайлов в разные форматы, показывает результат намного лучше, чем более дорогостоящий четырехъядерный Core 15-2500К, благодаря большему количеству ядер.

6. Кодирование видео. Архитектура ядра при в таких программных пакетах как Premier, Expression Encoder или Vegas Pro, играет большую роль. Здесь упор делается на быстрые ALU/FPU – это аппаратные вычислительные блоки ядра, ответственные за логические и арифметические операции при обработке данных. Ядра с разной архитектурой (даже если это разные линейки одного производителя) в зависимости от типа нагрузки, обеспечивают разный уровень производительности

Процессор Core i3-2120 на основе ядра Sandy Bridge от компании Intel, с меньшей тактовой частотой, меньшим объемом кэш-памяти и меньшим количеством ядер, выигрывает у процессора AMD FX-4100 построенного на ядре Zambezi, который стоит практически те же деньги. Такой необычный результат можно объяснить различиями в архитектуре ядра и лучшей оптимизацией под конкретные программные приложения.

7. Архивация. Если вы за своим компьютером часто занимаетесь архивированием и распаковкой объемных файлов в таких программах как WinRAR или 7-Zip, то обратите внимание на объем кэш-памяти своего процессора. В таких делах кэш-память имеет прямую пропорциональность: чем она больше, тем больше производительность компьютера при работе с архиваторами . Показателем служит, процессор AMD FX-6100 с установленными на борту 8 Мб кэш-памяти уровня 3. Он управляется с задачей архивирования намного быстрее, чем сопоставимые по цене процессоры Core i3-2120 с 3 мегабайтами кэш-памяти третьего уровня и Core 2 Quad Q8400 с 4 мегабайтами кэш памяти второго уровня.

8. Режим экстремальной многозадачности. Некоторые пользователи работают сразу с несколькими ресурсоемкими программными приложениями с параллельно активированными фоновыми операциями. Только подумайте, вы на своем компьютере распаковываете огромный RAR -архив, одновременно слушаете музыку, редактируете несколько документов и таблиц, при этом у вас запущен Skype и интернет-браузер с несколькими открытыми вкладками. При таком активном использовании компьютера очень важную роль играет возможность процессора выполнять несколько потоков операций параллельно. Получается, что первостепенное значение при таком использовании занимает количество ядер у процессора.

С многозадачностью справляются многоядерные процессоры AMD Phenom II Хб и FX-8xxx. Здесь стоит отметить, что AMD FX-8150 с восемью ядрами на борту, при одновременной работе нескольких приложений, имеет немного больший запас производительности, чем, к примеру, более дорогой процессор Core i5-2500K со всего четырьмя ядрами. Конечно, если требуется максимальная скорость, то лучше смотреть в сторону процессоров Core i7, которые способны легко обогнать FX-8150.

Вывод

В заключение можно сказать, что на общую производительность системы влияет огромное количество различных факторов. Конечно, хорошо иметь процессор с высокой тактовой частотой, большим количеством ядер и объемом кэш-памяти, плюс не плохо бы самую современную архитектуру, но все эти параметры имеют разное значение для разных типов задач.

Вывод напрашивается сам собой: если хотите с толком вложить деньги в обновление компьютера, то определите самые приоритетные задачи и представьте сценарии повседневного использования. Зная конкретные цели и задачи, вы сможете легко выбрать оптимальную модель, которая наилучшим образом подойдет именно под ваши потребности, работу и, самое главное, бюджет.