» »

Метод замены переменной. Подробная теория с примерами

28.11.2023

Интегрирование заменой переменной (метод подстановки) — один из самых часто встречающихся методов нахождения интегралов.

Цель введения новой переменной — упростить интегрирование. Лучший вариант — заменив переменную, получить относительно новой переменной табличный интеграл. Как определить, какую замену нужно сделать? Навыки приходят с опытом. Чем больше примеров решено, тем быстрее решаются следующие. На начальном этапе используем следующие рассуждения:

То есть. если под знаком интеграла мы видим произведение некоторой функции f(x) и ее производной f ‘(x), то то эту функцию f(x) нужно взять в качестве новой переменной t, поскольку дифференциал dt=f ‘(x)dx уже есть.

Рассмотрим, как работает метод замены переменной, на конкретных примерах.

Вычислить интегралы методом замены переменой:

Здесь 1/(1+x²) — производная от функции arctg x. Поэтому в качестве новой переменной t возьмем arctg x. Далее — воспользуемся :

После того, как нашли интеграл от t, выполняем обратную замену:

Если взять за t синус, то должна быть и его производная, косинус (с точностью до знака). Но косинуса в подынтегральном выражении нет. А вот если в качестве t взять экспоненту, все получается:

Чтобы получить нужный дифференциал dt, изменим знак в числителе и перед интегралом:

(Здесь (ln(cosx))’ — .)

А способы приведения интегралов к табличным мы Вам перечислили:

    метод замены переменной;

    метод интегирования по частям;

    Метод непосредственного интегрирования

    способы представления неопределенных интегралов через табличные для интегралов от рациональных дробей;

    методы представления неопределенных интегралов через табличные интегралы для интегралов от иррациональных выражений;

    способы выражения неопределенных интегралов через табличные для интегралов от тригонометрических функций.

Неопределенный интеграл степенной функции

Неопределенный интеграл експоненты показательной функции

А вот неопределенный интеграл логарифма не является табличным интегралом, вместо него табличной является формула:

Неопределенные интегралы тригонометрических функций: Интегралы синуса косинуса и тангенса

Неопределенные интегралы с обратными тригонометрическими функциями

Приведение к табличному виду или метод непосредственного интегрирования . С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов.

Пример

Задание. Найти интеграл

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

Ответ.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

Подведение функции под знак дифференциала. – Собственно замена переменной.

Подведение функции под знак дифференциала

Пример 2

Выполнить проверку.

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на . Далее используем табличную формулу :

Проверка: Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается: Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак: Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место. Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко: Теперь по правилам пропорции выражаем нужный нам :

В итоге: Таким образом: А это уже самый что ни на есть табличный интеграл (таблица, интегралов, естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену:

Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче. Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Интегрирование по частям. Примеры решений

Интегралы от логарифмов

Пример 1

Найти неопределенный интеграл.

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрироватьправую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: . Вот кстати, и образец чистового решения с небольшими пометками:

Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям и формула – это два взаимно обратных правила.

Интегралы от экспоненты, умноженной на многочлен

Общее правило: за

Пример 5

Найти неопределенный интеграл.

Используя знакомый алгоритм, интегрируем по частям:

Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле .

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом или даже

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.

Замена переменной в неопределенном интеграле используется при нахождении интегралов, в которых одна из функций является производной другой функции. Пусть есть интеграл $ \int f(x) dx $, сделаем замену $ x=\phi(t) $. Отметим, что функция $ \phi(t) $ является дифференцируемой, поэтому можно найти $ dx = \phi"(t) dt $.

Теперь подставляем $ \begin{vmatrix} x = \phi(t) \\ dx = \phi"(t) dt \end{vmatrix} $ в интеграл и получаем, что:

$$ \int f(x) dx = \int f(\phi(t)) \cdot \phi"(t) dt $$

Эта и есть формула замены переменной в неопределенном интеграле .

Алгоритм метода замены переменной

Таким образом, если в задаче задан интеграл вида: $$ \int f(\phi(x)) \cdot \phi"(x) dx $$ Целесообразно выполнить замену переменной на новую: $$ t = \phi(x) $$ $$ dt = \phi"(t) dt $$

После этого интеграл будет представлен в виде, который легко взять основными методами интегрирования: $$ \int f(\phi(x)) \cdot \phi"(x) dx = \int f(t)dt $$

Не нужно забывать также вернуть замененную переменную назад к $ x $.

Примеры решений

Пример 1

Найти неопределенный интеграл методом замены переменной: $$ \int e^{3x} dx $$

Решение

Выполняем замену переменной в интеграле на $ t = 3x, dt = 3dx $:

$$ \int e^{3x} dx = \int e^t \frac{dt}{3} = \frac{1}{3} \int e^t dt = $$

Интеграл экспоненты всё такой же по таблице интегрирования, хоть вместо $ x $ написано $ t $:

$$ = \frac{1}{3} e^t + C = \frac{1}{3} e^{3x} + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int e^{3x} dx = \frac{1}{3} e^{3x} + C $$

Метод основан на следующей формуле: ò f(x)dx = ò f(j(t)) j`(t) dt, где x = j(t) - функция, дифференцируемая на рассматриваемом промежутке.

Доказательство. Найдем производные по переменной t от левой и правой частей формулы.

Отметим, что в левой части находится сложная функция, промежуточным аргументом которой является x = j(t). Поэтому, чтобы дифференцировать ее по t, сначала дифференцируем интеграл по x, а затем возмем производную от промежуточного аргумента по t.

(ò f(x)dx)` t = (ò f(x)dx)` x *x` t = f(x) j`(t)

Производная от правой части:

(ò f(j(t)) j`(t) dt)` t = f(j(t)) j`(t) = f(x) j`(t)

Так как эти производные равны, по следствию из теоремы Лагранжа левая и правая части доказываемой формулы отличаются на некоторую постоянную. Поскольку сами неопределенные интегралы определены с точностью до неопределенного постоянного слагаемого, то указанную постоянную в окончательной записи можно опустить. Доказано.

Удачная замена переменной позволяет упростить исходный интеграл, а в простейших случаях свести его к табличному. В применении этого метода различают методы линейной и нелинейной подстановки.

а) Метод линейной подстановки рассмотрим на примере.

Пример 1. . Пусть t = 1 – 2x, тогда

dx = d(½ - ½ t) = - ½ dt

Следует отметить, что новую переменную можно не выписывать явно. В таких случаях говорят о преобразовании функции под знаком дифференциала или о введении постоянных и переменных под знак дифференциала, - т.е. о неявной замене переменной .

Пример 2. Например, найдем òcos(3x + 2)dx. По свойствам дифференциала
dx = (1/3)d(3x) = (1/3)d(3x + 2), тогда òcos(3x + 2)dx = ò(1/3)cos(3x + 2)d(3x +
+ 2) = (1/3)òcos(3x + 2)d(3x + 2) = (1/3)sin(3x + 2) + C.

В обоих рассмотренных примерах для нахождения интегралов была использована линейная подстановка t = kx + b (k ¹ 0).

В общем случае справедлива следующая теорема.

Теорема о линейной подстановке . Пусть F(х) - некоторая первообразная для функции f(х). Тогда òf(kx + b)dx = (1/k)F(kx + b) + C, где k и b - некоторые постоянные, k ¹ 0.

Доказательство.

По определению интеграла òf(kx + b)d(kx + b) = F(kx + b) + C. Ho
d(kx + b)= (kx + b)`dx = kdx. Вынесем постоянный множитель k за знак интеграла: kòf(kx + b)dx = F(kx + b) + C. Теперь можно разделить левую и правую части равенства на k и получить доказываемое утверждение с точностью до обозначения постоянного слагаемого.

Данная теорема утверждает, что если в определение интеграла ò f(x)dx = F(x) + C вместо аргумента х подставить выражение (kx + b), то это приведет к появлению дополнительного множителя 1/k перед первообразной.


С использованием доказанной теоремы решим следующие примеры.

Пример 3.

Найдем . Здесь kx + b = 3 – x, т.е. k = -1, b = 3. Тогда

Пример 4.

Найдем . Здесь kx + b = 4x + 3, т.е. k = 4, b = 3. Тогда

Пример 5.

Найдем . Здесь kx + b = -2x + 7, т.е. k = -2, b = 7. Тогда

.

Пример 6. Найдем . Здесь kx + b = 2x + 0, т.е. k = 2, b = 0.

.

Сравним полученный результат с примером 8, который был решен методом разложения. Решая эту же задачу другим методом, мы получили ответ . Сравним полученные результаты: . Таким образом, эти выражения отличаются друг от друга на постоянное слагаемое , т.е. полученные ответы не противоречат друг другу.

Пример 7. Найдем . Выделим в знаменателе полный квадрат.

В некоторых случаях замена переменной не сводит интеграл непосредственно к табличному, но может упростить решение, сделав возможным применение на последующем шаге метода разложения.

Пример 8. Например, найдем . Заменим t = x + 2, тогда dt = d(x + 2) = dx. Тогда

где С = С 1 – 6 (при подстановке вместо t выражения (x + 2) вместо первых двух слагаемых получим ½x 2 -2x – 6).

Пример 9. Найдем . Пусть t = 2x + 1, тогда dt = 2dx; dx = ½ dt; x = (t – 1)/2.

Подставим вместо t выражение (2x + 1), раскроем скобки и приведем подобные.

Отметим, что в процессе преобразований мы перешли к другому постоянному слагаемому, т.к. группу постоянных слагаемых в процессе преобразований можно было опустить.

б) Метод нелинейной подстановки рассмотрим на примере.

Пример 1. . Пусть t = - x 2 . Далее можно было бы выразить х через t, затем найти выражение для dx и реализовать замену переменной в искомом интеграле. Но в данном случае проще поступить по-другому. Найдем dt = d(-x 2) = -2xdx. Отметим, что выражение xdx является сомножителем подынтегрального выражения искомого интеграла. Выразим его из полученного равенства xdx = - ½ dt. Тогда

= ò (- ½)e t dt = (- ½)ò e t dt = (- ½)e t + C = (- ½) + C

Рассмотрим еще несколько примеров.

Пример 2. Найдем . Пусть t = 1 - x 2 . Тогда

Пример 3. Найдем . Пусть t = . Тогда

Пример 4. В случае нелинейной подстановки также бывает удобно использовать неявную замену переменной.

Например, найдем . Запишем xdx =
= (-1/4)d(3 - 2x 2) (неявно заменили переменной t = 3 - 2x 2). Тогда

Пример 5. Найдем . Здесь тоже введем переменную под знак дифференциала: (неявная замена t = 3 + 5x 3). Тогда

Пример 6. Найдем . Поскольку ,

Пример 7. Найдем . Поскольку , то

Рассмотрим несколько примеров, в которых возникает необходимость сочетать различные подстановки.

Пример 8. Найдем . Пусть
t = 2x + 1, тогда x = (t – 1)/2; dx = ½ dt.

Пример 9. Найдем . Пусть
t = x - 2, тогда x = t + 2; dx = dt.

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом , где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала ;
– Собственно замена переменной .

По сути дела, это одно и то же, но оформление решения выглядит по-разному.

Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:

То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.

Пример 1

Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию под знак дифференциала:

Раскрывая дифференциал, легко проверить, что:

Фактически и – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?

Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ .

Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:

Теперь можно пользоваться табличной формулой :


Готово

Единственное отличие, у нас не буква «икс», а сложное выражение .

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила .

Пример 2

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .
Далее используем табличную формулу :

Проверка:


Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:

В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:

Строго говоря, решение должно выглядеть так:

Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой .
В данном случае напрашивается:
Вторая по популярности буква для замены – это буква .
В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:
Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место.
Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко:
Теперь по правилам пропорции выражаем нужный нам :

В итоге:
Таким образом:

А это уже самый что ни на есть табличный интеграл (таблица интегралов , естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .


Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:


Проведем замену:


Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче .

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Пример 6

Найти неопределенный интеграл.

Проведем замену: (другую замену здесь трудно придумать)

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл .

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении .

Пример 7

Найти неопределенный интеграл. Выполнить проверку.

Пример 8

Найти неопределенный интеграл.

Замена:
Осталось выяснить, во что превратится

Хорошо, мы выразили, но что делать с оставшимся в числителе «иксом»?!
Время от времени в ходе решения интегралов встречается следующий трюк: мы выразим из той же замены !

Пример 9

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 10

Найти неопределенный интеграл.

Наверняка некоторые обратили внимание, что в моей справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная : (функции , могут быть и не в произведении)

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за знаменатель, то велики шансы, что числитель превратится во что-нибудь хорошее.